F-16 Fighting Falcon
Derek Crane
F-16 Familiarization

- Identifying Attributes
 - Single Intake
 - Single Engine
 - Single Tail Fin
 - Wing Shape
F-16 Familiarization

• Fast Facts:
 ▪ 50ft long, 30ft+ wingspan, 16ft tall
 ▪ Weight: 18.9K lbs – 26.5K lbs
 ▪ Mach 2+
 ▪ Armaments
 ▪ 20mm gatling
 ▪ Rockets
 ▪ Missiles
 ▪ Bombs
 ▪ http://en.wikipedia.org/wiki/F-16
F-16 Familiarization

- Fast Facts Continued:
 - First Flight February 1974
 - Introduced August 1978
 - 4450+ built
 - Cost 14.5 Million – 18.8+ Million
 - Developed by General Dynamics
 - Taken over by Lockheed Martin

F-16 Familiarization

- Blocks (like models)
 - F-16A/B
 - 1,5,10,15,20
 - F-16C/D
 - 25,30/32,40/42
 - 50/52
 - F-16E/F
 - 60

F-16 Familiarization

- World Usage: USAF + 25 other countries
- Bahrain, Belgium, Chile, Denmark, Egypt, Greece, Indonesia, Iraq, Israel, Italy, Jordan, Morocco, Netherlands, Norway, Oman, Pakistan, Poland, Portugal, Taiwan, Singapore, South Korea, Thailand, Turkey, United Arab Emirates, Venezuela
Acronyms

- DED - data entry display
- FCC - fire control computer
- HOTAS - hands on throttle and stick
- HUD – heads up display
- ICP – interface control panel
- MMC – module mission computer
- MFD – Multi-function display
F-16 Cockpit View
Example Block Diagram

Bus Controller

MMC

Peripherals

MUXBUS A

RADAR

NAV

STORES

MUXBUS B

Bridge

MUXBUS C

LINK16

MFD

ICP

MUXBUS C

HUD

DED

HOTAS
MMC

- "Hot-swap"
- Multiple cards
 - MIPS like uPs
- Bus Controller
- Replaced 3 components: FCC, HUDEU, CIU
- "Brains of the beast"
MMC

- The MMC performs algorithmic tasks for weapon delivery, energy management, and navigation. It also performs avionics fault collection and reporting. It has built-in diagnostics fault detection up to Line Replaceable Module level.

- The MMC is divided into 4 functional blocks:
 - Data Processing Set (DSP) : weapons control and mux bus control.
 - Avionics Display Set (ADS) : interface with Head-Up Display.
 - Avionics I/O Set (AIOS) : interface with avionics.
 - Power Set (PS) : MMC power supply and conditioner and HUD low voltage power supply.

MIL-STD 1553

MIL-STD-1553 is a military standard published by the United States Department of Defense that defines the mechanical, electrical, and functional characteristics of a serial data bus. It was originally designed for use with military avionics, but has also become commonly used in spacecraft on-board data handling (OBDH) subsystems, both military and civil. It features a dual redundant balanced line physical layer, a (differential) network interface, time division multiplexing, half-duplex command/response protocol, and up to 31 remote terminals (devices).

Event Queues & Timers

Events
- Similar to Interrupts
- Have to "sign-up" for events
- When event "fires" notify registered units

Multiple Timers
- Sign up if you need to be executed repeatedly
- Timers are multiples of each other
 - Ex: 100Hz, 50Hz, 25Hz, etc
Tool Chain

xUML → Code Generator → Compiler → Debugger
xUML

- Executable Unified Modelling language
 - Subset of UML
 - Create Classes, Member variables/methods
 - Use a Scripting language to attach functionality
 - Abstraction helps organization
 - Process Independent Design (PID)
 - Used in Aerospace, Automobile, Telecom, Healthcare, Nuclear Management
 - Can do some testing on models
Code Generation

- Take PID and make it Platform Dependent
 - From xUML and scripts generate a highlevel language such as C++, Jovial, Ada
 - Can/have to perform some hand modification
Compiler/Linker

- HUGE Makefiles
 - You thought our linker scripts were bad....

- Specialized Compilers
 - Highly optimizing
 - Reason it's called "nightly" build – it takes awhile
 - Can compile specific areas only for testing

- Creates Operational Flight Program (OFP)
 - Some RTOS functionality, but not full-fledged
 - Gray Area
TESTING

- Debugger
 - Similar to SoftConsole
 - One debugger per card in MMC
 - Not on hardware–simulated

- Desktop Simulator
 - Run compiled code on simulator to test for functionality/errors
 - ERROR....look at generated code, try modifying to see if can figure out a fix. Then go back to xUML/scripts to see if you can fix it there. Regenerate, Recompile, Resimulate
TESTING Phase 2 & 3

- Add in some Hardware
 - Peripherals/Sensors are hardware
 - MMC still simulated
 - If errors/issues, fix & repeat
- Add in Mostly hardware
 - MMC, Peripherals/Sensors are hardware
 - Still have some simulated things

Test stands
 - Think of it as a cockpit without the rest of the jet
Flight Test

- Hopefully by this phase most of the bugs are found, but some can still crop up
- New OFP loaded into a jet and an actual pilot takes to the air to test for new/improved functionality
- After flight test passes then new OFP can be deployed to other jets.
Join SMXG @ HILL AFB

- Good pay & benefits & fitness leave
- Multiple Projects in the SMXG
 - F-16
 - Testers
 - ICBMs
 - SION
 - Workloads increasing
- USAJOBS.com &
- Email resume to: derekcra@gmail.com
Questions?